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● Google Health’s mission is to improve 
accessibility

● Vector embeddings reduce barriers to entry 
● Vector embeddings are a potential bridge 

between all medical modalities
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Reducing barriers to AI 
development for medical 
imaging
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CXR AI is difficult and 
expensive to build

Building robust CXR models is 
challenging and time 
consuming

Requires large, curated 
datasets and extensive fine 
tuning

CXRs are accessible 
and available

~1B CXRs are taken to 
detect and manage many 
health conditions

Accessible and inexpensive 
imaging modality

AI can bridge gaps with 
interpretation

High quality interpretation is a 
challenge

Short supply of radiologists and 
variability between experts and 
sites

Long tail of rare conditions

CXR Overview

Developing AI for chest x-ray (CXR) is challenging
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Our mission is to enable others to train better 
custom medical imaging models with less 

data, setup, and compute
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Reducing model 
complexity

Decreasing training 
time

⧖

Improving label efficiency

≪

Reducing the barrier to entry for training custom models to 
read CXRs
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Our method is to offload as much of the heavy 
lifting as possible via large-scale medical 

imaging pretraining
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Typical setup
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CXR-specific networks with a 2nd stage of pretraining
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Bigger is better

Larger networks learn better 
representations when given 
sufficient data3 (and more data 
is better)

Requires large, curated 
datasets and extensive fine 
tuning

Upstream and 
downstream task 
performance are not 
necessarily correlated1

Standard measure of 
representation quality is 
fewshot linear probe 
performance on a variety of 
downstream tasks

Contrastive losses more 
directly optimize the 
latent space of our 
representations

Cross-entropy loss may have 
shortcomings such as poor 
margins2

How do we optimize for learning the best embeddings?

1 “Why Do Better Loss Functions Lead to Less Transferable Features?
2 from SupCon paper: “lack of robustness to noisy labels [59, 44] and the possibility 
of poor margins [14, 30], leading to reduced generalization performance”
3 see Big Transfer (BiT) results

https://proceedings.neurips.cc/paper/2021/file/f0bf4a2da952528910047c31b6c2e951-Paper.pdf
https://arxiv.org/abs/2004.11362v1
https://arxiv.org/abs/1805.07836
https://arxiv.org/abs/1406.2080
https://arxiv.org/abs/1803.05598
https://arxiv.org/abs/1612.02295
https://arxiv.org/abs/2006.10029
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Embeddings

Supervised Contrastive Learning
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Embeddings to distinguish classes from each other
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Same performance with 100x to 1000x less data

1. Linear 
classification model

2. Non-linear 
classification model

3. Fully fine-tuned 
network
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Example: TB model 
trained on <100 
images was 
non-inferior to 10 
radiologists
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Example: COVID-19 
severity model trained 
on ~500 images
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Extending to other modalities (Pathology)

1. Linear 
classification model

2. Non-linear 
classification model

3. Fully fine-tuned 
network
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Extending to other modalities (Dermatology)

1. Linear 
classification model

2. Non-linear 
classification model

3. Fully fine-tuned 
network
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ELIXR

Zero-shot Semantic search Visual question 
answering

Radiology report quality 
assurance

Data-efficient 
classification

Present results across the following tasks:

https://arxiv.org/abs/2308.01317
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ELIXR

https://arxiv.org/abs/2308.01317
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Data-efficiency improvements by 2 orders of magnitude
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Zero-shot 
comparable 
to fully 
supervised
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Extending to other modalities (Pathology)

1. Linear 
classification model

2. Non-linear 
classification model

3. Fully fine-tuned 
network
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Extending to other modalities (Pathology)

1. Linear 
classification model

2. Non-linear 
classification model

3. Fully fine-tuned 
network
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What’s next? Med-Gemini
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What’s next? Med-Gemini



A huge thank you


