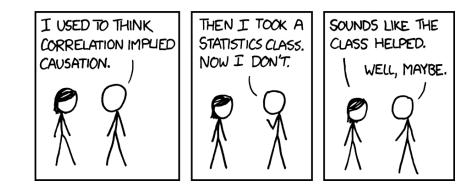


Tabular Data 3 : Statistics for Machine Learning Using the National Inpatient Sample Dataset

MinJae Woo

Assistant Professor of Health Informatics Clemson University



Alternative Title for Today's Session:

The Encyclopedia of Common Statistical Mistakes

PART 1: COMMON STATISTICAL MISTAKES DURING PREPROCESSING

- ✓ Missing Data and Imputation
- ✓ Variable Selection
- ✓ Imbalanced Dataset

PART 2: COMMON STATISTICAL MISTAKES DURING MODEL TRAINING

 Benchmark and Selection of Predictive Models PART 3: COMMON STATISTICAL MISTAKES DURING MODEL EVALUATION

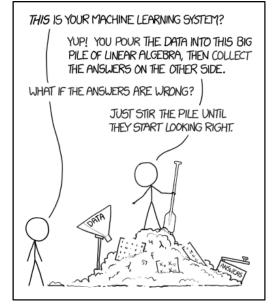
- ✓ Selection of Performance Metrics
- ✓ Imbalanced Dataset
- ✓ Absence of Failure Analysis
- ✓ Too-good-to-be-true Performance

PART 4: COMMON STATISTICAL MISTAKES DURING DISPARITY ANALTYSIS

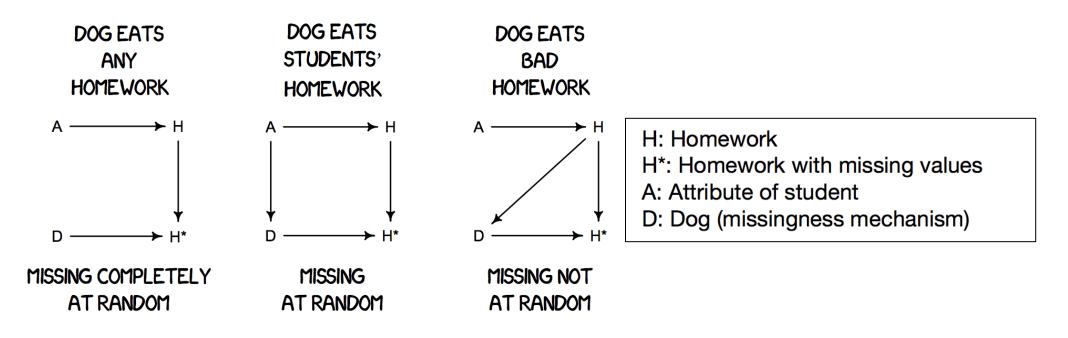
- ✓ Univariate Approach
- ✓ Our Approach with EMBED and NIS

PART 1

Common Statistical Mistakes During Preprocessing



Missing Data - Introduction



- I. From a statistical point of view, the most important consideration for missing data is the type of missingness pattern.
- 2. There are two missingness pattern types:
 - Missing Completely at Random (MCAR): The missing data points occur entirely at random
 - Missing Not at Random (MNAR): The value of the variable that's missing is related to the reason it's missing (e.g., depressed patients are not likely to answer a questionnaire "Are you depressed?")

Image Source: https://x.com/rlmcelreath

Statistical Imputation Using Regression

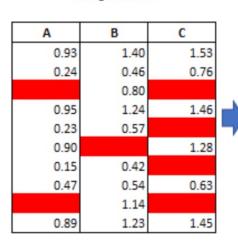
		Ideally:		
Patient	Glucose	Patient	Sugar	Carb
	Level	Age	Intake	Intake
Patient 1	85	43	55	88
Patient 2	110	35	36	153
Patient 3	97	67	missing	42
Patient 4	115	52	88	120
Patient 5	81	23	34	27
Patient 6	90	32	57	58

- I. (Left) In order to use regression imputation:
 - Set Sugar Intake as the dependent variable and all other variables as independent variables
 - Then, use data from patients 1, 2, 4, 5, and 6 to build a regression model.
 - Apply the model and input the values of GL, PA, and CI to calculate Sugar Intake for Patient 3.
- 2. (Right) What would be the procedure for using regression imputation for this particular missing pattern?

PART 1: Common Statistical Mistakes During Preprocessing

Missing Data - Introduction

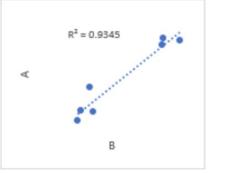
Missing data is in red. There is a strong correlation between A and B, so let's try to impute A using B and C.

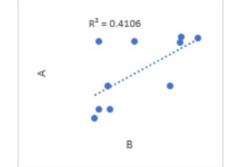


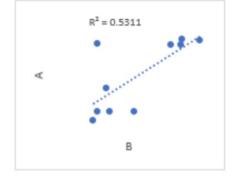
Missing data is filled in randomly. This dillutes the correlations, but allows us to impute using all available data.

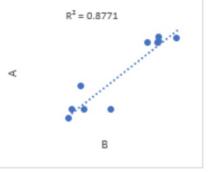
A random forest is used to predict A with B and C. Notice the correlation between A and B improved. After Imputing B using A and C, we have achieved a correlation between A and B much closer to the original data.

В А C 0.93 1.40 1.53 0.24 0.76 0.46 0.24 0.80 0.95 1.24 1.46 0.23 0.57 0.90 1.24 1.28 0.15 0.42 0.47 0.54 0.63 0.89 1.14 0.89 1.45 1.23









Source: cran.r-project.org

PART 1: Common Statistical Mistakes During Preprocessing

Missing Data - Mistakes

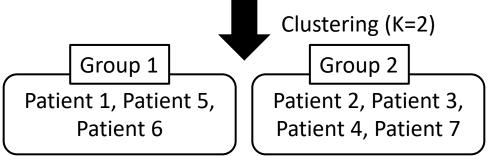
Patient	Glucose Level	Patient Age	Sugar Intake	Carb Intake	Patient	Glucose Level	Patient Age	Sugar Intake	Carb Intake
		1,80					1,96		intake
Patient 1	85	43	55	88	Patient 1	85	43	55	88
Patient 2	110	35	36	153	Patient 2	110	35	36	153
Patient 3	Missing	67	67	42	Patient 3	98	67	67	42
Patient 4	115	52	88	Missing	Patient 4	115	52	88	94.3
Patient 5	90	23	34	Missing	Patient 5	90	23	34	94.3
Patient 6	Missing	Missing	63	Missing	Patient 6	98	36.7	63	94.3
Patient 7	90	Missing	Missing	Missing	Patient 7	90	36.7	57.2	94.3
Average Value	98	36.7	57.2	94.3			•		

I. Performing imputation can severely distort the distribution of this variable, leading to an underestimation of the standard deviation, which requires caution in the context of descriptive analytics.

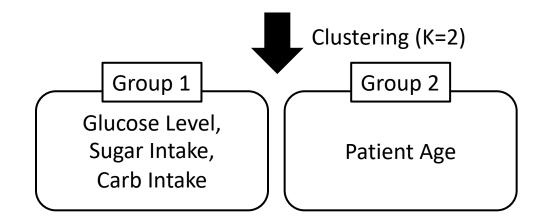
PART 1: Common Statistical Mistakes During Preprocessing

Variable Selection - Introduction

Patient	Glucose Level	Patient Age	Sugar Intake	Carb Intake
Patient 1	85	43	55	88
Patient 2	110	35	36	153
Patient 3	93	67	67	42
Patient 4	115	52	88	103
Patient 5	90	23	34	94
Patient 6	97	36	63	69
Patient 7	Patient 7 90		57	132
			ustering ((-2)



Variable	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5	Patient 6	Patient 7
Glucose Level	85	110	93	115	90	97	90
Patient Age	43	35	67	52	23	36	44
Sugar Intake	55	36	67	88	34	63	57
Carb Intake	88	153	42	103	94	69	132



Variable Selection - Mistakes

			Early detection
Features	ICD-9-CM	Importance	model excluded
Normal delivery	650	0.1758	Yes
Other obstetric trauma	665	0.0585	Yes
Spontaneous abortion (miscarriage)	634	0.0139	Yes
Other problems associated with amniotic cavity and membranes	658	0.0124	Yes
Antepartum hemorrhage, abruptio placentae	641.2	0.0106	Yes

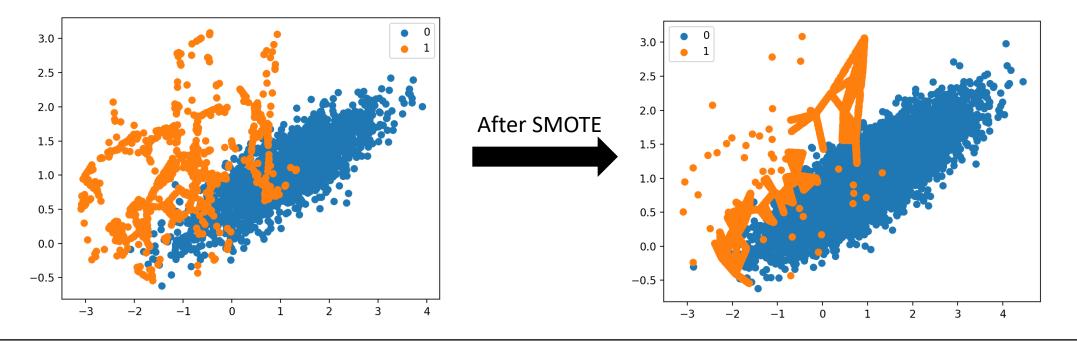
- I. Please, please, please be sure to consult with someone with domain expertise after running the automated variable selection such as K best selection or unsupervised variable clustering.
- 2. Be careful with ICD codes and be aware that those are designed primarily for billing purposes.
- 3. The most common suggestion by many IEEE/ACM reviewers is to use embeddings for these codes (instead of one hot coding), but we believe it may harm the transparency and expandability of predictive models.

Imbalanced Dataset - Introduction

Table 1. Distribution of patient records used for model development										
	Count (Percentage)									
Characteristics	Total	Training set	Validation set	Test set						
All records	6,561,385 (100.00%)	3,936,831 (100.00%)	1,312,277 (100.00%)	1,312,277 (100.00%)						
Label										
РРН	РРН 179,210 (2.73%)		36,055 (2.75%)	35,785 (2.73%)						
Non-PPH	6,382,175 (97.27%)	3,829,461 (97.27%)	1,276,222 (97.25%)	1,276,492 (97.27%)						

- I. If one label is more common than the other, the dataset is considered imbalanced.
- Although there is no concrete definition, <u>a minority class smaller than 5%</u> is typically considered imbalanced from statistical point of view.
 - However, you will start experiencing challenges when the minority class drops below 10%.
- 3. Remember, you are dealing with a completely different situation here.

Under- and Over-sampling for Imbalanced Dataset



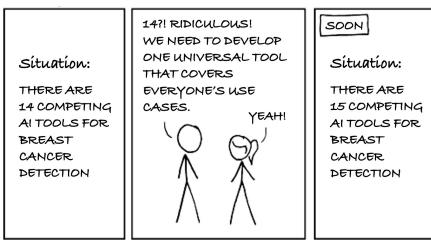
- I. Synthetic Minority Oversampling Technique (SMOTE) has been the most popular off-the-shelve option in many studies.
- 2. Beware that the use of SMOTE can lead to amplification of existing biases.


```
Algorithm 5.1 Balance-SMOTE.
   balanceSMOTE(TC)
      initialize Risk \leftarrow \emptyset
      for each x \in T where y(x) = 1 do
         Risk(x) \leftarrow 1
         S(x) \leftarrow \emptyset
         for each c \in C do
            r_c(x) \leftarrow assignRisk(x, c) to
            Risk(x) = Risk(x) \times r_c(x)
            S(x) \leftarrow S(x) \cup assignSubgroup(x, c)
         end for
         return Risk(x), S(x)
      initialize B_{pos} \leftarrow \emptyset, B_{neg} \leftarrow \emptyset
      for each s \in S do
         D_s^1 \leftarrow \{x \in T | S(x) = s \text{ and } y(x) = 1\}
         n_s \leftarrow \text{countRow}(s)
         w_s \leftarrow Risk(s)
         N_s = n_s \times w_s
         B_{pos} \leftarrow B_{pos} \cup \mathbf{oversample}(D_s, w_s)
         B_{neg} \leftarrow B_{neg} \cup undersample(D_s, N_s)
      end for
      return T_{BSMOTE} \leftarrow B_{pos} \cup B_{neg}
```


PART 2

Common Statistical Mistakes During Model Training

HOW AI TOOLS PROLIFERATE



Selection of Predictive Model - Introduction

Classifier	Dataset	AUC	Accuracy	Precision	Recall	F1 Score	Disparity Score
Baseline Logistic Regression	Test	0.623	0.725	0.044	0.442	0.080	
Baseline Naïve Bayes	Test	0.616	0.923	0.077	0.167	0.105	
Baseline XGBoost	Test	0.624	0.763	0.047	0.400	0.083	4.756
Baseline XGBoost	Holdout	0.628	0.763	0.047	0.406	0.085	4.564
Enhanced XGBoost	Test	0.591	0.728	0.039	0.382	0.071	2.875
Enhanced XGBoost	Holdout	0.591	0.726	0.038	0.377	0.069	3.011

- 1. The current state-of-the-art predictive models fall into two categories: models using boosting and models using neural networks.
- 2. Models using boosting:
 - The most popular one is XGBoost. Models using neural networks are generally trickier to train or fine-tune.
- 3. Models using neural networks:
 - The most popular is TabTransformer, suggested by NVIDIA, although some people prefer TabNet, suggested by Google.
- 4. (Highly-biased personal opinion) It seems that XGBoost outperforms TabNet in many use cases. This may be related to the fact that NN-based models are harder to optimize than boosting-based models, making it appear that XGBoost outperforms TabNet.

Selection of Predictive Model - Mistake

Classifier	Dataset	AUC	Accuracy	Precision	Recall	F1 Score	Disparity Score
Baseline Logistic Regression	Test	0.623	0.725	0.044	0.442	0.080	
Baseline Naïve Bayes	Test	0.616	0.923	0.077	0.167	0.105	
Baseline XGBoost	Test	0.624	0.763	0.047	0.400	0.083	4.756
Baseline XGBoost	Holdout	0.628	0.763	0.047	0.406	0.085	4.564
Enhanced XGBoost	Test	0.591	0.728	0.039	0.382	0.071	2.875
Enhanced XGBoost	Holdout	0.591	0.726	0.038	0.377	0.069	3.011

- I. The most common mistake in predictive modeling using machine learning is to use machine learning.
- 2. Carefully crafted traditional models (e.g., regression and simple decision trees) can offer comparable performance to stateof-the-art machine learning models in many cases, while facilitating explanability and easier maintenance. This is especially true for many tabular datasets that are not overly complex.
- 3. Most common mistake arise from lack of domain expertise; again, make sure to consult with your domain expert
 - "We developed an AI screening model to detect asymptomatic COVID-19 patients using CT images."

Selection of Predictive Model - Mistake

Classifier	Dataset	AUC	Accuracy	Precision	Recall	F1 Score	Disparity Score
Baseline Logistic Regression	Test	0.623	0.725	0.044	0.442	0.080	
Baseline Naïve Bayes	Test	0.616	0.923	0.077	0.167	0.105	
Baseline XGBoost	Test	0.624	0.763	0.047	0.400	0.083	4.756
Baseline XGBoost	Holdout	0.628	0.763	0.047	0.406	0.085	4.564
Enhanced XGBoost	Test	0.591	0.728	0.039	0.382	0.071	2.875
Enhanced XGBoost	Holdout	0.591	0.726	0.038	0.377	0.069	3.011

- I. If machine learning models were to be used, you will need a benchmark to justify your selection.
- 2. Be cautious with comparing boosting-based models and NN-based models. The results can very easily be cherry-picked, such as adopting favorable preprocessing process for a specific type of model. As a reviewer, I always try to look for evidence that the authors were aware and mindful of the nature of comparison.

PART 3

Common Statistical Mistakes During Model Evaluation

AFTER TRAINING CLASSIFIER
AHH JUST NEED TO FIGURE OUT THE MAGIC THRESHOLD ! LET ME DRAW MY ROC-AUC PLOT AND GET MY SPOTTER !

Selection of Performance Metrics

Model	Acc	RMSE	TPR	FPR	Prec	Rec	F1-score	AUC	InfoS
ANN	71.7	0.4534	0.44	0.16	0.53	0.44	0.48	0.7	48.11
Boost	75.5	0.4324	0.27	0.04	0.74	0.27	0.4	0.59	34.28
KNN	72.4	0.5101	0.32	0.1	0.56	0.32	0.41	0.63	43.37
Bagg	71	0.4494	0.37	0.14	0.52	0.37	0.43	0.6	22.34
SVM	67.8	0.4518	0.17	0.1	0.4	0.17	0.23	0.63	11.3

- I. The above example features different models and performance metrics applied to the same dataset.
- 2. For classification, the most common metrics are accuracy, FI-score, and AUC.
- 3. Some metrics have a trade-off relationship with others (e.g., precision and recall).

Selection of Performance Metrics

Model	Acc	RMSE	TPR	FPR	Prec	Rec	F1-score	AUC	InfoS
ANN	3	2	1	1	3	1	1	1	1
Boost	1	5	4	4	1	4	4	4	3
KNN	2	1	3	3	2	3	3	2	2
Bagg	4	4	2	2	4	2	2	3	4
SVM	5	3	5	3	5	5	5	2	5

- I. Depending on which performance metric is chosen, the best model can change.
- 2. Some papers introduce their own performance metrics along with their proposed models, which requires caution when interpreting the results.
- 3. Use caution when interpreting confidence intervals for performance metrics.

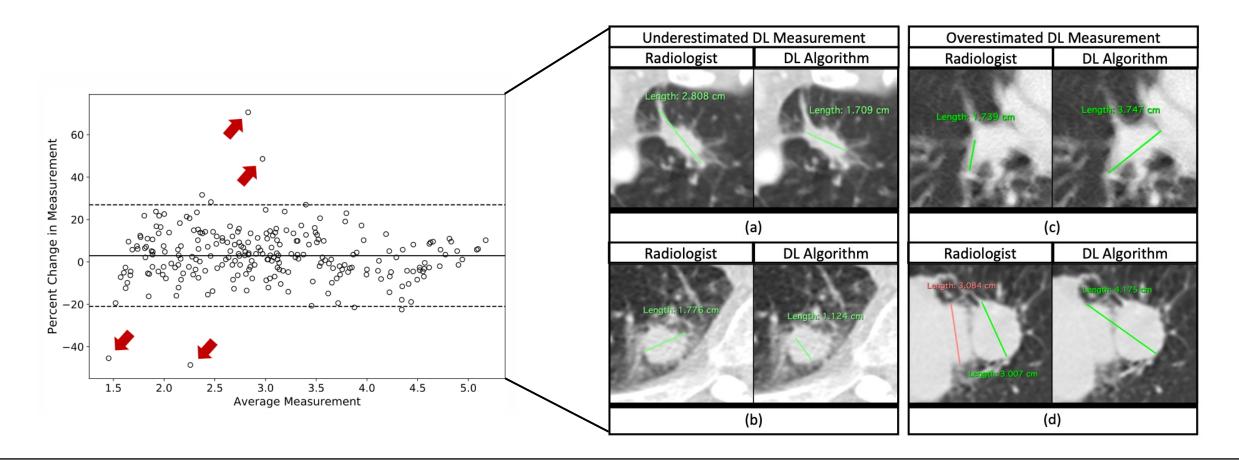
Imbalanced Dataset

		Actual			
		Pos	Neg		
Predicted	Pos	990	10		
	Neg	0	0		
Accuracy: 0.99					

- I. The most common mistake during model evaluation is not considering the imbalanced distribution of positives and negatives, when applicable.
- 2. Especially in highly imbalanced datasets, your accuracy, AUC, and FI score can be misleadingly high <u>even if the model</u> <u>does not perform at all on the minority class</u>.
- 3. A lot of models involving imbalanced datasets are screening models, where it is generally appropriate to prioritize recall (also known as sensitivity).

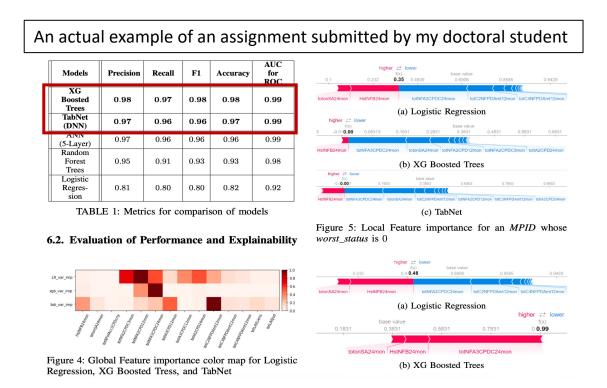
PART 3: Common Statistical Mistakes During Model Evaluation

Absence of Failure (Case) Analysis



1. There should be either a failure case study (presented above) or a failure analysis (to identify the cause of failure), followed by a performance evaluation.

High (Maybe Too High) Performance



- 1. Having predictors that are supposed to be the dependent variable in a predictive model happens more frequently than you might think (e.g., using patient charges as a predictor in a model predicting length of stay).
- Remember that an AUC of 0.99 is like an error message indicating one of the following:

 (a) Reverse Causality
 (b) Data Leakage
 (c) An overly simple task with a trivial solution or
 (d) You deserve a Nobel Prize.

PART 4

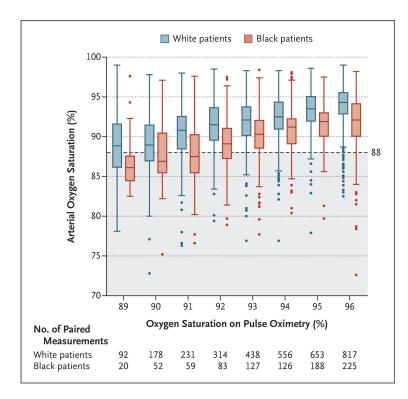
Common Statistical Mistakes During Disparity Analysis

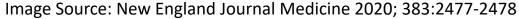
DESPITE OUR GREAT RESEARCH RESULTS, SOME HAVE QUESTIONED OUR AI-BASED METHODOLOGY. BUT WE TRAINED À CLASSIFIER ON A COLLECTION OF GOOD AND BAD METHODOLOGY SECTIONS, AND IT SAYS OURS IS FINE.

Univariate Approach

Research shows that pulse oximeters may provide inaccurate readings for Black patients and people with darker skin tones.

Will they also be inaccurate for (1) white patients with darker skin tones and (2) Black patients with lighter skin tones?





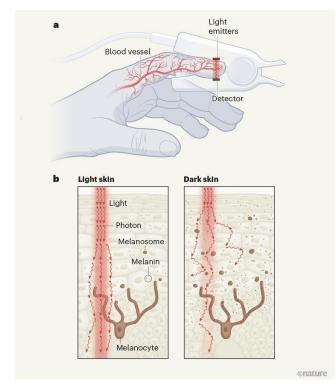


Image Source: Nature 610(7932):449-451

Our Multivariate Approach with EMBED

Table 4: Evaluation of Model Performance Using Multivariate Regression to Assess Risk Ratio of FalseNegative Predictions by Subgroups, Compared to Versus Univariate Evaluation

Variables	OR	RR	Univariate <i>p</i> -value	Multivariate <i>p</i> -value	Number of Patches	Control Group
Black	0.880	0.922	< 0.001*	0.248	2,630	White
Other*	0.749	0.828	< 0.001*	0.050^{*}	1,160	White
50-60y/o	0.881	0.918	< 0.001*	0.315	1,798	<50y/o
60-70y/o	0.823	0.875	< 0.001*	0.163	1,434	<50y/o
>70y/o	0.89	0.924	< 0.001*	0.482	840	<50y/o
BI-RADS density B	1.132	1.060	< 0.001*	0.079	311	BI-RADS density A
BI-RADS density C	0.752	0.862	0.490	0.590	2,327	BI-RADS density A
BI-RADS density D	1.239	1.103	0.015*	0.756	321	BI-RADS density A
Benign *	0.567	0.927	< 0.001*	0.011*	499	Never Biopsied
Cancer	0.778	0.971	< 0.001*	0.533	118	Never Biopsied
Mass *	0.596	0.921	< 0.001*	0.010*	761	No Mass
Asymmetry *	0.751	0.854	< 0.001*	0.040*	3,127	No Asymmetry
AD *	2.575	1.037	0.575	< 0.001*	413	No AD
Calcification	0.744	0.934	< 0.001*	0.075	1,248	No Calcification

Note: Univariate two-sample Student's t-test was conducted to compare the difference in the false negative rate of bootstrap performance between subgroups and control groups. Demographic and clinical/imaging features were evaluated using a multivariate logistic regression model for descriptive analysis to control for confounding effects between the selected features. A total of 6,142 patches were inspected. AD = Architectural Distortion; BI-RADS = Breast Imaging Reporting and Data System; OR = Odds Ratio; RR = Risk Ratio. *Statistically significant, p<.05

Our Multivariate Approach with NIS

Variables	OR	RR	p-value	Control Group	
Income quartile 2	0.988	0.992	0.308	Income quartile 1	
Income quartile 3	1.001	1.001	0.912	Income quartile 1	
Income quartile 4	0.981	0.987	0.174	Income quartile 1	
White *	1.279	1.26	< 0.001	Asian or Pacific Islander	
Black *	1.446	1.412	< 0.001	Asian or Pacific Islander	
Hispanic *	1.089	1.084	< 0.001	Asian or Pacific Islander	
Native American *	1.37	1.344	< 0.001	Asian or Pacific Islander	
Other races *	1.142	1.134	< 0.001	Asian or Pacific Islander	
Medicare *	1.28	1.269	< 0.001	Self-pay	
Medicaid *	1.186	1.179	< 0.001	Self-pay	
Private insurance *	1.29	1.278	< 0.001	Self-pay	
No charge	1.016	1.015	0.880	Self-pay	
Other payment methods *	1.203	1.196	< 0.001	Self-pay	
New England *	1.406	1.321	< 0.001	West South Central	
Middle Atlantic *	1.352	1.281	< 0.001	West South Central	
East North Central *	1.224	1.182	< 0.001	West South Central	
West North Central *	1.186	1.152	< 0.001	West South Central	
South Atlantic *	1.231	1.188	< 0.001	West South Central	
East South Central *	1.129	1.106	< 0.001	West South Central	
Mountain *	1.178	1.146	< 0.001	West South Central	
Pacific *	1.338	1.27	< 0.001	West South Central	
≥1 million population "Central" counties *	1.176	1.165	<0.001	Not metropolitan or micropolitan counties	
≥1 million population "Fringe" counties	1.042	1.04	0.059	Not metropolitan or micropolitan counties	
250,000-999,999 population		1.032	0.127	Not metropolitan or micropolitan counties	
50,000-249,999 population	1.012	1.012	0.604	Not metropolitan or micropolitan counties	
Micropolitan counties *	0.942	0.945	0.012	Not metropolitan or micropolitan counties	
*statistically significant, p<0.05.					

*statistically significant, $p \le 0.05$.

THANK YOU

mwoo@clemson.edu

https://www.clemson.edu/cbshs

Building People and Communities